Haskell Practice - Ugly Numbers
題目就在這,我就不再多做說明了,這題寫完,暫時要停下來,把 scm 老師的信消化,然後鳥書繼續前進 XD。
is_un n
| n == 1 = True
| n `mod` 2 == 0 = is_un (truncate (fromIntegral n/fromIntegral 2))
| n `mod` 3 == 0 = is_un (truncate (fromIntegral n/fromIntegral 3))
| n `mod` 5 == 0 = is_un (truncate (fromIntegral n/fromIntegral 5))
| otherwise = False
is_un2 n
| n == 1 = True
| n `mod` 2 == 0 = is_un2 (until (\x -> x `mod` 2 /= 0) (\x -> truncate (fromIntegral x/ fromIntegral 2)) n)
| n `mod` 3 == 0 = is_un2 (until (\x -> x `mod` 3 /= 0) (\x -> truncate (fromIntegral x/ fromIntegral 3)) n)
| n `mod` 5 == 0 = is_un2 (until (\x -> x `mod` 5 /= 0) (\x -> truncate (fromIntegral x/ fromIntegral 5)) n)
| otherwise = False
is_un3 n = foldl judge n [2,3,5] == 1
where judge n y = until (\x -> x `mod` y /= 0) (\x -> truncate (fromIntegral x/ fromIntegral y)) n
un_list :: [Integer] -> Integer -> [Integer]
un_list (x:xs) n
| n == 0 = (x:xs)
| otherwise = un_list (min:x:xs) (n-1)
where min = minimum (filter (>x) [u*v | u<-(x:xs), v<-[2, 3, 5]])
傳說中這題是一行就可以寫完的,但是我不知道怎麼寫,我還是一樣照我的想法寫 XD,剛開始的想法非常簡單,一直除 2, 3, 5,最後的結果不等於 1 就不是,這方法當然很慢,不過練習還是有用的,因為從 is_un 至 is_un3 可以讓我練一下 foldl ,也讓我明確的了解到 foldl 和 foldr 的根本性不同 (沒錯,我之前又完全搞錯了,剩下只有 fold fusion 要搞懂了)
最後一個 un_list 的想法則是比較正面,找到前面 list 乘於 2, 3, 5 然後大於 list 最大的數的數列最小值,這速度顯然快很多 XD。在這樣子的狀況下寫成 tail recursive 比較直覺,但是其實將整個數列反過來算也是 ok 的,所以我就索性反過來算了。測試結果如下 ...
*Main> reverse (un_list [5, 4, 3, 2, 1] 1495)
[1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,27,30,32,36,40,45,48,50,54,60,64,72,75,80,81,90,96,100,108,120,125,128,135,144,150,160,162,180,192,200,216,225,240,243,250,256,270,288, ...
同場加映 Python 版,不過真的只能說 Haskell 影響 Python 很深,在 list 操作部分很像,但是沒有 Haskell 來的漂亮 XD
def ugly_number(list_size):
ug_list = [1]
for i in range(0, list_size-1):
ug_list.append(min(filter(lambda x: x>ug_list[len(ug_list)-1], [x*y for x in ug_list for y in [2,3,5]])))
return ug_list
---
該繼續打底了 ... XD
2010/03/15 05:58 pm 今天晚上可能無法再做練習了,可能要先看一下 paper ,不過初步的破爛想法是
makePrime x = if prime (x+add) then (x+add)
else makePrime (x+add)
where add = if x `mod` 6 == 1 then 4 else 2
primes = 5: map primeCircule2 primes
其實不是沒有想過一次生二個 element (試著寫 let p = 5:7: map (6+) p),但是回傳時一定要產生一個 element,如果不是的時候總不能丟 0 XD,所以只好先交出一個破爛方法,剩下的明天再試。
2010/03/18 11:06 am 後來想到兩個數列分開算再用 merge 即可,不過速度上應該是佔不到便宜就是了 ...
makePrime_plusn n x = if prime (x+n) then (x+n) else makePrime_plusn n (x+6)
primes = 5: map makePrime primes
primes2 = merge primes_plus2 primes_plus4
where primes_plus2 = 5: map (makePrime_plusn 6) primes_plus2
primes_plus4 = 7: map (makePrime_plusn 6) primes_plus4
8 則留言:
這個問題看來就像是用產生的會比用消去法容易呢。
你最近的兩個練習 (ugly numbers 和 prime numbers) 剛好都可以寫成 circular programs:
ugly = 1 : ... ugly ...ugly ..
primes = 2 : ... primes ...
要不要往這個方向想想看哩?
我試試看!
一些 hint。所有自然數的 list 是:
nats = 0 : map (1+) nats
所有二的乘冪的 list 是...?
*Main> let ps2 = 2: map (*2) ps2
*Main> take 10 ps2
[2,4,8,16,32,64,128,256,512,1024]
有一點不知道老師問的是不是這個 XD?
是的! :) 然後,用類似的方法(應該會用到我們之前用過的函數),就可以定義所有 ugly number 的 stream 了。
您好,最近在學 haskell。
在尋找中文教材的過程中,找到您的網誌。
我自己也試了一下,想跟您分想我自己的寫法。
import List
prime_number :: [Int] -> [Int]
prime_number z = [y|y<-z,y/=1,(mod y 2)/=0,(mod y 3)/=0,(mod y 5)/=0]
unugly_number :: Int -> Int -> [Int]
unugly_number x y = sort [k*m|k<-prime_number [x..y],m<-[1..y],k*m<=y]
離一行還好遠。
原本的想法如下。
let unugly_number x y = sort [k*m|k<-prime_number [x..y],m<-[1..y],k*m<=y]
[x|x<-[1..11],y<-unugly_number 1 11,(mod x y) /= 0]
原本想用正解來解,後來發現用反解好像比較簡單。
不過還是寫不了一行。
希望能一起學習 haskell ^_^
哈,你好,我最近剛好很忙,一直到今天才有空回覆,在 Introduction to Functional Programming using Haskell 裡面有寫到如何使用一行來寫作。
很開心可以一起寫 Haskell !
My solution:
http://davidtran.doublegifts.com/blog/?p=166
ugly :: [Integer]
ugly = 1 : merge (map (2*) ugly) (map (3*) ugly) (map (5*) ugly)
where merge xxs@(x:xs) yys@(y:ys) zzs@(z:zs)
| x < y && x < z = x : merge xs yys zzs
| y < x && y < z = y : merge xxs ys zzs
| z < x && z < y = z : merge xxs yys zs
| x == y = merge xs yys zzs
| y == z = merge xxs ys zzs
| z == x = merge xxs yys zs
main = putStrLn $ "The 1500'th ugly number is " ++ show (ugly !! 1499) ++ "."
張貼留言